
Proceedings of ISon 2022, 7th Interactive Sonification Workshop, BSCC, University of Bremen, Germany, September 22–23, 2022

SONIC TILT MANUAL: CREATE YOUR OWN VERSION OF TILTIFICATION

Steffen Kleinert

University of Bremen
Computer Science Department

Bremen, Germany
stkl@uni-bremen.de

Tim Ziemer

University of Bremen
Bremen Spatial Cognition Center

Bremen, Germany
ziemer@uni-bremen.de

ABSTRACT
This is a guide to walk you through the necessary steps to im-
plement your own sonification ideas in Sonic Tilt, the open
source version of our mobile app Tiltification. It contains
all steps necessary to build the Android app on a Windows 10 com-
puter using Flutter in combination with Android Studio, as well as
the steps necessary to replace our psychoacoustic sonification with
your own sound design using Pure Data. Besides the Pure Data
sound design, no programming skills are necessary. Please hand
in your own version of Tiltification for the Sonification Design
Competition for the International Conference on Auditory Display
(ICAD) 2023, together with a manuscript that explains and/or eval-
uates your sound design.

1. INTRODUCTION

In 2020 we developed Tiltification [1], a mobile spirit level app
that utilizes our psychoacoustic sonification [2] as a user interface
to guide a user when leveling furniture, etc. Besides being a means
for teaching and research, our goal for Tiltification was science
communication. We wanted to get as many users as possible in
contact with sonification. Within a year, the app was downloaded
over 20, 000 times. In [3] we analyzed app store statistics, review
articles and user feedback to assess the appropriateness of our mea-
sures to develop, distribute, and market this and our previous app,
the CURAT sonification game [4].

A lot of positive and critical feedback about Tiltification has
reached us. Some users found our sonification not intuitive, not
informative, and/or not appealing. This is a justified criticism, as
we simply implemented our sonification for navigation [5] as is,
without adapting it for the usage as a spirit level. In the sonification
scene there is a wide consensus that sounds should be developed,
or at least adapted for the specific use case [6, p. 219][7].

The good thing is that sound designers, composers, artists, au-
dio engineers and researchers exist worldwide, having all it takes
to conceptualize and implement just the right sonification for a
spirit level. An adequate sound design may be musically, psy-
choacoustically or comically motivated and deliver the optimal
compromise between information density, pleasantness and intu-
itiveness of sound.

With the open source project Sonic Tilt [8] we provide
sonification designers with all the necessary infrastructure to cre-
ate their own version of Tiltification, with their very own sound
design. Except from Pure Data, no further programming skills are
required if you follow this Guide.

The theme of the International Conference on Auditory Dis-
play (ICAD) 2023 will be “Sonification for the Masses”, and as

a satellite event we will organize a sonification design competi-
tion. To participate, all you need to do is hand in your own build
of Sonic Tilt together with a paper that describes your sound
design, including motivation, explanation of the mapping, expla-
nation of the implementation and, if you find the time, an evalu-
ation. Participants in the competition can present their Sonic Tilt
version at the ICAD conference to a larger audience. The guide at
hand allows you to set up your system and get ready to implement
and test your very own sonification design to create your own spirit
level sonification app and participate in the competition.

To get an idea of how a spirit level sonification might sound,
please have a look at the psychoacoustical sonification from the
original Tiltification app under
https://youtu.be/CkzQPD7VYHo and test it yourself us-
ing the Tiltification app that can be downloaded under https://
sonification.uni-bremen.de/downloads.html. You
can also watch a demo video of our musical sonification idea for
sonic tilt on https://youtu.be/ILvFaLfs78g and down-
load the respective apk from the University of Bremen server to
play around with it.

2. MATERIALS AND EQUIPMENT

To build your own version of Sonic Tilt you need some hard-
ware:

• A Windows 10 computer with an internet connection and 5
GB of free space on your hard drive (Other operating sys-
tems may work, too)

• An Android smartphone (A tablet may work, too)

• A USB data cable to connect the computer and the smart-
phone (a “charge-only” cable will not work)

You will also need some software. We will explain in this
guide where to download and how to install it:

• Git

• Sonic Tilt

• Flutter

• Android Studio

• Pure Data

3. GIT INSTALLATION

According to the official Flutter installation guide, Git is a sys-
tem requirement to develop apps with Flutter. Besides that it is

ISon2022-1

https://icad2023.icad.org
https://icad2023.icad.org
https://youtu.be/CkzQPD7VYHo
https://sonification.uni-bremen.de/downloads.html
https://sonification.uni-bremen.de/downloads.html
https://youtu.be/ILvFaLfs78g
https://seafile.zfn.uni-bremen.de/f/9a3a18af7fe742d6b11c/?dl=1
https://docs.flutter.dev/get-started/install

Proceedings of ISon 2022, 7th Interactive Sonification Workshop, BSCC, University of Bremen, Germany, September 22–23, 2022

our choice for version control and collaborative programming and
designing.

Download git from https://git-scm.com/download/
win.

Figure 1: Make sure to activate “Git from the command line and
also from 3rd party software” during the installation

4. PROJECT DOWNLOAD

Now that Git is installed, create a folder with a short path, such as
C:\tiltification .

Here, you right-click and choose Git Bash Here to open a
terminal window. In the terminal window you type git clone
https://github.com/Tiltification/sonic-tilt.
git or paste it by right-clicking on the terminal window and se-
lecting paste (remember line break). Hit the return key and
the repository should download and become visible as a directory
called sonic-tilt .

Alternatively, you can download the repository as a ZIP file
from
https://github.com/Tiltification/sonic-tilt/
archive/refs/heads/master.zip and extract it in
C:\tiltification as illustrated in Fig. 2.

5. FLUTTER DOWNLOAD

We developed Tiltification using Flutter 1.22.0 from the 1st of Oc-
tober 2020. As newer versions may produce errors when compil-
ing, we recommend installing the dated version from
https://docs.flutter.dev/development/tools/sdk/
releases?tab=windows.

Extract files to C:\tiltification so that the tiltifica-
tion folder contains the two sub-folders sonic-tilt and
flutter_windows_1.22.0-stable. This short file path
will come in handy, as you will have to find and copy Flutter’s file
path later on.

Figure 2: Clone our repository using the address from GitHub or
download it’s contents as a ZIP file

6. ANDROID STUDIO INSTALLATION AND SETUP

Android Studio comes along with all development kits that we
need in order to build our app, and also provides us an IDE to
work with. Our latest tested Android Studio version was 2021.1.1
Patch 3, but it is likely for the newest version to work just fine.
It can be downloaded from https://developer.android.
com/studio/.

After double clicking the Android Studio installer, it takes
some seconds to respond. After clicking Next on the welcome
message you will be asked to choose the components to install.
Feel free to uncheck the Android Virtual Device to save
some space, as you will be using your phone as a physical device
to build on. Click Next.

As the installation location for Android Studio, choose a folder
named AndroidStudio (without a space character) to
C:\tiltification so that the tiltification folder con-
tains the three sub-folders AndroidStudio , sonic-tilt
and flutter_windows_1.22.0-stable. You can click
through the next options. When clicking the final Finish button
you can start Android Studio directly. Otherwise and in the future
you can always start it from
C:\tiltification\AndroidStudio\bin\studio64.
exe.

You will need an internet connection upon the first start of An-
droid Studio. In the first pop up window choose do not import
settings and click OK. In the Android Studio Setup Wizard
change the Install Type from
standard to custom to be able to set your own path for it.
You will be asked to choose the Java Development Kit (JDK) lo-
cation to use, which should be the one installed with Android Stu-
dio under C:\tiltification\AndroidStudio\jre. Af-
ter choosing the eye-friendly and energy-efficient Darcula theme
you will get to the SDK Components Setup. Here, you can
leave all boxes checked as they are. What we are interested in is to
set the Android SDK Location at the bottom of the window
to a new folder named C:\tiltification\AndroidSDK as
indicated in Fig. 3 and click next. The last steps can be left to
default. The installation wizard will finish by asking you to accept
all licenses before you can click on Finish.

Now that the when Android Studio starts you will already
find an option to install the plugins needed to work with Flutter,

ISon2022-2

https://git-scm.com/download/win
https://git-scm.com/download/win
https://github.com/Tiltification/sonic-tilt.git
https://github.com/Tiltification/sonic-tilt.git
https://github.com/Tiltification/sonic-tilt/archive/refs/heads/master.zip
https://github.com/Tiltification/sonic-tilt/archive/refs/heads/master.zip
https://docs.flutter.dev/development/tools/sdk/releases?tab=windows
https://docs.flutter.dev/development/tools/sdk/releases?tab=windows
https://developer.android.com/studio/
https://developer.android.com/studio/

Proceedings of ISon 2022, 7th Interactive Sonification Workshop, BSCC, University of Bremen, Germany, September 22–23, 2022

Figure 3: Setting the SDK location, leaving check boxes on default

shown in Fig. 4. If this window does not pop up, go to File
→ Settings... and select Plugins from the list in the left
column. Under Plugins search the list for flutter, click the
Install button next to it and accept the privacy note. A pop up
window informs you about Dart, the next plugin to install. Click
on Install inside that pop up window. The Dart plugin could
otherwise also be installed over the same list like the flutter
one.

Figure 4: Installing the Flutter plugin before opening the project

After some installation progress the button next to Flutter
should change to Restart IDE. Click it to finish the plugin
installations.

Now that the plugins are installed you can click the folder icon
Open to search your machine for our sonic-tilt project. It
should exhibit an Android face icon (), as Android Studio rec-
ognizes it as an Android Studio project. Open it, click Trust
Project if asked, and give the project some time to load. If your
firewall pops up, allow adb.exe to access the network. Even
though the interface is visible early, any inputs will be very laggy
until the last progress bars at the bottom stops moving.

To connect Android Studio to the Flutter SDK, go to File→
Settings... found in the menu bar at the top of Android Stu-
dio’s main window. A menu opens as illustrated in Fig. 5. Inside
the Settings menu double click on Languages & Frameworks
where you can find Dart and Flutter. Click on Flutter and
you will see the option to enter the path to your Flutter installation.
Enter the path to where you unpacked Flutter into (the last folder
of the path should be named flutter in all lowercase, unless
you renamed things) and click OK to get back to the Settings
menu.

Figure 5: Selecting the path to Flutter inside Android Studio’s Set-
tings window

After clicking OK, you might already see a console at the bot-
tom of Android Studio’s main window become active. This can
take up to 1 minute. Incompatible Flutter version will now display
red complains. But if the message ends on Process finished
with exit code 0, as illustrated in Fig. 6, everything is set.
Don’t worry if you see no messages. As soon as you build the
project, the routines will be called automatically.

Figure 6: ”flutter pub get” signaling that the used Flutter version
works with the project

Another crucial part to make your own Pure Data sonifications
usable is to install the Android NDK, as we are using code that
isn’t supported by just the normal Android SDK. At the top under
Tools you need to click on the SDK Manager. A window as
illustrated in Fig. 7 pops up. Here, you need to select the tab
SDK Tools. This should bring up a big list of tools available to
install. What we need are NDK (Side by side) and CMake,
so check the boxes next to them and click OK at the bottom right.

For some reason Android Studio doesn’t always stick to it’s
own naming conventions. The NDK you just installed should now
lie in a folder structure ndk/some.version.number/ inside
the directory you installed the Android SDK into earlier. For An-
droid Studio to find it during a build process however, you some-
times need to rename that ndk folder to ndk-bundle and move
all the content inside the folder named by the NDK’s version num-
ber up into the renamed ndk-bundle folder directly. So try this

ISon2022-3

Proceedings of ISon 2022, 7th Interactive Sonification Workshop, BSCC, University of Bremen, Germany, September 22–23, 2022

Figure 7: Make sure to set the Android SDK location, install NDK
(Side by side) and CMake

renaming if errors around the NDK occur when walking through
the next section about building the app or go to the troubleshooting
section 10.4 directly for more help.

Flutter needs to be informed explicitly where it can find the
Android SDK. Go to the Terminal tab in Android Studio. It can
be found on the bottom of the window in the same line as Git,
TODO, Problems, (sometimes Messages) and
Dart Analysis.
This opens a terminal window right above the tab. Here, write C:
\tiltification\flutter_windows_1.22.0-stable\
flutter\bin\flutter.bat config --android-sdk
C:\tiltification\AndroidSDK\ .
This tells Flutter where it can find the Android SDK. After press-
ing [Return], it should only take a second or so and then the text
You may need to restart any open editors for
them to read new settings. should be displayed in the
terminal window. Do so, exit Android Studio and open it again.

7. FIRST TEST BUILD

To be able to run a test build on your Android device, you first
have to go into it’s settings and enable the developer mode to make
debugging on it possible. This is done differently in every Android
version, and you may look for a detailed description on the official
Android Website.

In principle, you need to go to Settings and scroll all the
way down to About phone. Here, you scroll down to Build
number and tap it 7 times. Then you need to type in your pass-
word. This unlocks the developer options. Now go to System,
tap on Advanced, look for USB debugging and activate it.
Sometimes, this option is hidden under Developer options.

After connecting the phone via USB cable to your PC with
Android Studio open, your phone now asks you to allow debug-
ging. Allow it (you might have to allow it multiple times) and
your phone should load as a device at the top of Android Studio
near a green play button 8.

Figure 8: Left rectangle: where the phone shows up when con-
nected; Right rectangle: the button to create a test build on the
selected phone

If everything went right you are now ready to click said green
button to create a test build of the app on your phone. Especially

on the first build you can expect it to load for several minutes.
But unless the process stops you do not have to worry about any
warnings on the console. And in case it does unfortunately stop on
an error, you should check our troubleshooting section 10.4, as it
is likely a development kit not being found.

Once built, the app will start directly on your phone. From
that point on it is an actual new app called Sonic Tilt on your
phone, having the Sonic Tilt icon:

Note that you can unplug your phone, close the app and reopen it
from your phone’s app menu at any time. There are no conflicts
in case you have our original app Tiltification installed al-
ready. This is an independent app now, that will update every time
you make changes to the Android Studio project and rebuild it.
You can use and familiarize with the app and its functions, and
explore how the psychoacoustic sonification responds to the two
tilt angles. We created a YouTube playlist introducing the app,
showing some use cases, and explaining the buttons.

Then, it is about time to replace the sound by your own sonifi-
cation idea. The following section will explain how.

8. PURE DATA

The sonification of our app is designed using Pure Data. Download
Pure Data from https://puredata.info/downloads, in-
stall it, and associate .pd files with it. Your Pure Data version
(like Vanilla or Extended) does not matter at this point as it is just
an editor for you to work on pd patches and not part of the build
process.

What matters is to know the correct paths to the files you want
to edit with Pure Data. For Android builds this is
C:\tiltification\sonic-tilt\android\app\src\
main\res\raw, where all Pure Data files can be found in a
ZIP file called streamingassets.zip. Extract all files to C:
\tiltification\sonic-tilt\android\app\src\main\
res\raw, which should produce a folder named
streamingassets. If so, cut the ZIP file and paste it to
C:\tiltification\streamingassets.zip as a backup.

In the streamingassets folder (not the zip file) the
shepardGuide.pd is your entry point. Open this file with Pure
Data. You will see several inlets, some wild routing and sub-
patches, and the [dac˜] output. Delete the wild routing and
subpatches and replace it with your own sonification. As indi-
cated in Fig. 9, the parts to delete are marked by a red rectangle
and a comment on the right will give you some hints on how to
start implementing some sound designs yourself. The inlet labeled
sound is the volume control that can take values from 0 to 1. The
inlet pink is either 0 or 1. It tells you whether the smartphone
is tilted by more than 3◦ or not. Tiltification uses this informa-
tion to (un-)mute pink noise as a confirmation to the user that the
mobile phone is almost leveled. The inlet tarX is the tilt angle
along the left-right dimension. Here, angles from −45◦ to 45◦

are linearly scaled to values from −0.5 to 0.5, telling you by how
much the smartphone is tilted to the left or right. Angles that have
a larger absolute value than 45◦ will still be transferred to tarX
as −0.5 or 0.5, respectively. The inlet tarY is the tilt angle along
the front-back dimension, again, with angles between −45◦ and
−45◦ scaled to values between −0.5 and 0.5. It tells you by how

ISon2022-4

https://developer.android.com/studio/debug/dev-options
https://www.youtube.com/watch?v=SAQF2lO8zM8&list=PLVv3BMS8IIXEm748HgrkAvFtymaXLAHX6
https://puredata.info/downloads

Proceedings of ISon 2022, 7th Interactive Sonification Workshop, BSCC, University of Bremen, Germany, September 22–23, 2022

much the smartphone is tilted towards or away from you. Again,
larger tilt angles will still send a −0.5 or 0.5 to tarY.

These are all inputs that your sonification needs. The output of
your sonification has to be routed to both inlets of [dac˜]. Even
though you can use stereo, we recommend to stick to mono, i.e.,
route the same signal to the left and the right inlet of [dac˜].
Furthermore, all important auditory information should be con-
tained in the frequency region between 200 Hz and 4 kHz. This
is because many smartphones only have a mono tweeter, and most
users will certainly not use headphones while leveling furniture or
alike. Consequently, stereo information and frequencies outside
the bandwidth of the tweeter will be lost.

Figure 9: The shepardGuide.pd contains our psychoacoustic soni-
fication that you can replace by your own sonification approach

The objective of the user will be to reach a value of 0 for tarX
and tarY, and your responsibility as a sonification designer is to
guide the user there. If you use any externals, please copy the
respective PD files into the streamingassets folder.

To test your sonification, open receiverLibPD.pd. This
patch opens the shepardGuide.pd as a subpatch. In
receiverLibPD.pd you can manually manipulate tarX using
the green, horizontal slider, tarY using the blue, vertical slider,
pink (un-)checking the toggle box, and volume using the white,
vertical slider as illustrated in Fig. 10.

To test your sonification inside the Sonic Tilt app on your
mobile phone, use the Windows explorer, navigate to
C:\tiltification\sonic-tilt\android\app\src\
main\res\raw\streamingassets, right-click and choose
New→ Compressed (zipped) folder that you name
streamingassets.zip. Then, copy all files from the folder
to the ZIP file. When finished, move the file to
C:\tiltification\sonic-tilt\android\app\src\
main\res\raw. This way of zipping files seems unnecessarily
complicated. But if you simply zip the complete folder directly, the
ZIP file will not contain all files directly, but within a subfolder, in
which case the file structure is wrong and the built app will stay
silent.

With your phone connected via USB (and USB debugging en-
abled) it is now just another click on the green button in Android
Studio (remember Fig. 8) to build the app with your new sonifica-
tion. App builds may take a minute. After the successful build, the
Sonic tilt app opens automatically on your android phone.

Figure 10: The receiverLibPD.pd file that allows you to manipu-
late all variables that Tiltification will pass to your sonification

9. APP BUILD

While you develop your own bullseye spirit level sonification in
Sonic Tilt, you will make changes in the Pure Data files over
and over, create the streamingassets.zip file, run the app
on your smartphone and explore how the sonification responds to
your actions. Note that in the Sonic Tilt menu there is an op-
tion to use the spirit level only in one dimension. This option will
set tarY to 0 and the only variables controlled by the smartphone
sensors are tarX, pink and mute.

When you are happy with the sound inside the app, and its re-
sponse to the smartphone orientation and motion, you should build
an APK. To do so, navigate to Build → Flutter → Build
APK. The compilation may take a minute. You can find the APK
file under C:\tiltification\sonic-tilt\build\app\
outputs\flutter-apk\app.apk. Note that the app you
create is yours. You can use it and even publish it, as long as
you do this under an appropriate license, like the MIT license,
and mention that you created this app using Flutter and Sonic Tilt.
Please refer to our open source Git project [8] and our Tiltifica-
tion paper [1] wherever you present your Sonic-Tilt app. Note that
you are also free to modify other parts of Sonic Tilt, such as
the Graphical User Interface (GUI). You are free to include menu
sounds or a screen reader, apply additional signal processing on
the sensors, include the compass as a third dimension, develop a
sensor calibration routine or whatever you like. We even recom-
mend you to replace our app icon by your own design. This app
icon is a PNG file with a resolution of 2000 times 2000 pixels
that you can find under C:\tiltification\sonic-tilt\
assets\logo.png.

Now it is time for you to prepare a documentation of your
sonification and submit it together with the APK file of your app
for the sonification design competition at ICAD 2023. Before you
hand them in, please make sure that the APK file contains your lat-
est changes: Uninstall Sonic Tilt from your smartphone and
use the Windows Explorer to copy the APK file from your
computer to your smartphone. On your smartphone, open the APK
file to install the app. If prompted, toggle Allow from this

ISon2022-5

https://mit-license.org

Proceedings of ISon 2022, 7th Interactive Sonification Workshop, BSCC, University of Bremen, Germany, September 22–23, 2022

source. You may need to allow APK installs in your Android
settings first. Depending on your Android version this can be

done under Settings→ Apps→
...→ Special access→

Install unknown apps or under Settings → Apps &
notifications→ Advanced→ Special app access
→ Install unknown apps.

10. TROUBLESHOOTING

Even when you strictly follow our instructions, issues can occur.
Here are some common problems and potential solutions:

10.1. No Device in Android Studio

To see whether Android Studio recognizes your smartphone, click
on the Device Manager icon that is highlighted as number 3 in
Fig. 11. Here, choose the tab Physical. This should show a
list of all devices connected so far. The first column shows the
device name, the second shows the API, which can be translated
into the respective Android version via a table in Wikipedia, the
third shows the connection type. Your currently connected device
should have the USB icon () in the third column. If not, there are
four potential solutions:

Figure 11: Screenshot of Android Studio showing that Flutter rec-
ognizes the connected device (1), the Stop button (2) that turns
red while Flutter is trying to run or debug an app, and Android
Studio’s Device Manager that should show the connected de-
vice under the Physical tab

1. Make sure you have enabled the developer mode and acti-
vated USB debugging on your smartphone.

2. On some smartphones you have to allow USB debugging
over and over. So unlock your smartphone and check, whether it
asks you to allow USB debugging and confirm. If your are not
getting asked, try disabling and then enabling USB debugging.

3. Some USB cables are “charge only” cables that will not
transfer data. Make sure to connect your phone with a “data cable”.
As soon as you connect your phone via data cable, Android should
ask you to allow USB debugging from the connected device, which
you should confirm.

4. Sometimes, drivers are corrupted or dated. Download and
install the latest drivers for your smartphone.

10.2. Device Recognized by Android Studio but not by Flutter

In Fig. 11 you see how it looks like when Flutter recognizes the
connected smartphone. If the dropdown menu (1 in Fig. 11) states
<no devices>, even though the Device manager in An-
droid Studio lists your smartphone as being connected via USB,
some approaches may solve this issue:

1. Sometimes, Flutter takes quite a while to recognize con-
nected devices. You should be patient and wait for two minutes
for the connected device to be recognized. You should also try and

click on the dropdown list 1 in Fig. 11, click Refresh and wait
for another two minutes.

2. Unexpected error may occur, but the Flutter Doctor is there
to help. In Android Studio, navigate to Tools→ Flutter→
Flutter Doctor. This starts Flutter’s internal self-test. In the
Messageswindow categories with issues are marked with a [!],
the concrete problem is marked with an X. For some issues, poten-
tial solutions are described and links for further reading are pro-
vided.

10.3. Problems with Pure Data

Sometimes it looks as if the ShepardGuide.pd file was empty.
In this case, make sure to scroll to the upper left corner of the Pure
Data window using the two scroll bars.

10.4. Failing to Build

If your app does not build, this can have many reasons:

10.4.1. Environment Variables

Most errors in the build process occur, because Android Studio
doesn’t find the correct paths to it’s development kits. For the NDK
we already suggested two different paths to put it in, but the most
robust solution for all the development kits is to set an environment
variable for them in the operating system.

The fastest way to do this is illustrated in Fig. 12. Use the Win-
dows shortcut [Win] + [R], type in sysdm.cpl and click OK
to get to the System Properties window. Here, select the tab
Advanced. In that Tab click on Environment Variables.
.. in the bottom right corner. Here you can click on New... ei-
ther just for your account or for all accounts on your machine. En-
vironment variables need a name like JAVA_HOME and a value to
point to like C:\tiltification\AndroidStudio\jre.
Click OK to save the environment variable.

Figure 12: Setting environment variables on Windows

With environment variables like this, programs like Android
Studio can easily find what they are looking for. Make sure to

ISon2022-6

https://en.wikipedia.org/wiki/Android_version_history#Overview
Stop
Device Manager
Physical
Device manager

Proceedings of ISon 2022, 7th Interactive Sonification Workshop, BSCC, University of Bremen, Germany, September 22–23, 2022

restart Andoid Studio after setting them, for it to register the newly
set environment variables.

In case environment variable are a possible solution, the error
messages down in the Run-console of Android Studio will men-
tion their names. Below are examples of environment variables
often needed for Android Studio to find everything important:

• ANDROID_NDK_HOME is the environment variable name
to set the NDK location with. This value should become C:
\tiltification\AndroidSDK\ndk-bundle\ ac-
cording to our naming conventions.

• JAVA_HOME is the environment variable name to set the
JDK location with. This value should be set to the Java De-
velopment Kit that came with Android Studio. According
to our naming conventions that value would be
C:\tiltification\AndroidStudio\jre.

If that does not work, here is another way to set environment
variables as a plan b: Press the [Win] key, type cmd, right-click
on command promt and click run as administrator.
Confirm that you want to run it as administrator and enter your
admin password if asked. A terminal window pops up.

Here, type setx -m JAVA_HOME C:\tiltification\
AndroidStudio\jre\ or copy it from this manuscript, right-
click on the terminal window to paste it, and delete any line breaks
that may appear. The terminal should print
SUCCESS: Specified value was saved. as an output.

10.4.2. Flutter and Dart

Make sure you downloaded Flutter 1.22.0. We have also tested
Flutter 1.22.4 successfully. But other versions may not work, es-
pecially Flutter 2 and newer versions. Make sure you enabled the
plugins for Flutter and Dart in Android Studio under File
→ Settings→ Plugins. Make sure you entered
C:\tiltification\AndroidSDK as the Android SDK lo-
cation under Tools→ SDK Manager.

10.4.3. streamingassets

Flutter does not like unexpected files inside the project. Make
sure to create the streamingassets.zip file and delete the
streamingassets folder and all its containing files before you
run the app.

10.5. No Audio in App

Naturally, you should ensure that your phone is not muted. Keep
the “volume up” button on the side of your smartphone pressed for
several seconds to maximize the smartphone volume.

Apart from that we identified four common reasons for the
Sonic Tilt app to stay silent:

10.5.1. The Mute Button

On default the built Sonic Tilt app will be set to mute and you
will have to tap the loudspeaker icon at the bottom left of the app
to unmute it. If unmuted, the loudspeaker symbol is not crossed
out anymore.

10.5.2. streamingassets.zip

Firstly, it can easily happen that your latest changes of
shepardGuide.pd are only contained in the
streamingassets folder and not yet in the ZIP file. Make
sure to create a new streamingassets.zip file every time
you want to test a new build.

Secondly, it is easy to mess up the folder structure of the
streamingassets.zip file. Make sure the Pure Data files are
directly inside that zip and not in another folder beneath it or they
won’t be found.

10.5.3. Incompatible Device

Download and run Tiltification from the Google Play Store or the
University of Bremen Server. If the sound doesn’t work either,
Sonic Tilt may be incompatible with your device. In this case
you need to find another smartphone or tablet to test your app.

10.5.4. Erroneous shepardGuide.pd

Maybe your Pure Data file(s) contain an error. Try replacing your
sonification by a simple pure tone that is constantly playing by
putting an object [osc˜ 440] in your file and connecting its
outlet to the [dac˜] inlets, save the file, zip all files and compile
a new test build. It this works, try to debug your Pure Data files.

10.6. Audio Artefacts in the App

Audio artefacts can have several causes.

10.6.1. Clipping

It is important to know that the audio output in Pure Data only
allows values from −1 to 1. This is true for the sum of all inputs
to the [dac˜]. All values outside this range will cause clipping,
which may sound as distortion, crackling, clicks or noise. Try
connecting every audio to an object [*˜ 0.01], route that to the
[dac˜] and listen carefully, if the artefacts are gone.

10.6.2. Unknown Pure Data Externals

Sonic Tilt uses libpd to use Pure Data as a sound engine on
Android. It is possible that libpd does not know all the externals
that you installed on your computer. To be on the safe side, install
Pure Data without any additional externals. Every object that does
not work with the native install of Pure Data should be added to the
streamingassets.zip to make sure that iemlib can call it.

For example, to use the [pink˜] object from the iemlib
external, you should either copy the pink˜.pd file to
streamingassets.zip, or you create your own pink˜.pd
file that carries out all the expected operations or signal processing.

10.6.3. Computational Demands

Smartphones tend to have a quite high computational power. But
if your Pure Data files contain a lot of real-time signal processing,
like convolutions, Fourier transforms, and dozens of oscillators,
this may be too much for some smartphones, and they fail pro-
cessing it in real time, which leads to audible artefacts. In this case
try to reduce the signal processing demands of your sonification.

ISon2022-7

https://play.google.com/store/apps/details?id=de.uni_bremen.informatik.sonification_apps
https://sonification.uni-bremen.de/downloads.html
https://github.com/libpd/pd-for-android

Proceedings of ISon 2022, 7th Interactive Sonification Workshop, BSCC, University of Bremen, Germany, September 22–23, 2022

10.6.4. Errors in Pure Data Signal Chain

Signal processing in Pure Data can produce many artefacts. Some-
times, no artefacts occur when you change values using sliders,
especially because you slowly modify one value after another. But
then, when you use the smartphone sensors, several values may
alter at once, and the alterations may be much faster and contain
more jitter as compared to using a slider. Use the app in one-
dimensional mode to see whether the artefact still occurs. If not,
tarY may cause the artefact. Try tilting the smartphone slowly to
check whether fast motions may cause the artefact. Tilt the smart-
phone near 3◦ to hear whether the [pink] object causes the arte-
fact. Use the app with headphones and listen carefully. If the arte-
facts are gone, low frequencies may cause them. These frequencies
are practically inaudible when played via the internal smartphone
speakers. Nonetheless, they deflect the speaker membrane and, to-
gether with the audible sounds, may produce artefacts. In the case
of low frequency artefacts, either try to eliminate the cause of low
frequencies in your signal processing, or add a high pass filter to
the signal chain.

Note, for example, that the [osc˜] object in Pure Data is a
cosine function that can produce an audible click when switched
on and/or off. This may also be true for other oscillators. Here, a
ramp at the onset and offset may help.

11. CONCLUSION

This paper is an instruction manual to use and modify Sonic
Tilt, our open source bulseye spirit level sonification app. As
you can see there are a good amount of steps needed to success-
fully work with our open source repository. But once everything
is installed there are just a few edits in Pure Data files needed to
let the app display a whole new sonification of yours. No other
programming skills are required. If you managed to implement
your own sonification in Sonic Tilt, we recommend you to
take part in the ICAD 2023 sonification design competition. You
can also use the app for teaching purposes, as a demonstrator for
science communication or as as interactive arts project. You may
even release the app.

12. FURTHER READING

After following our instructions, you should be ready to go. How-
ever, if you have never user Pure Data before, you should take two
weeks and learn it. [9] teaches you the use of Pure Data from
scratch in a number of tutorial videos, all including comprehen-
sive examples. For those who prefer reading books over watch-
ing videos, [10] and [11] contain all the necessary information
to learn Pure Data. Note that Pure Data is very similar to Max
(a.k.a. Max/MSP/Jitter), so Max users should readily implement
their own Pure Data sonification.

Acknowledgments
We thank the students from the Master’s Project “Sonification Apps”:
Fida Ahmadi, Malte Asendorf, Ahmed Awadin, Debaditya
Bhowmik, Jiumeng Chen, Kelly Huynh, Navid Mirzayousef Jadid,
Hasanur Jaman, Moritz Kienzle, Jatawan Kruesilp, Ying Ying Lee,
Wei Luo, Varun Raval, Rachel Ringe, Eve Emily Sophie Schade,
Kashish Sharma, Xin Wang, Colin Weber and Helena Winkler.

We thank Stephen Barrass who had the idea of the Sonic Tilt
sonification design competition, Myounghoon “Philart” Jeon who
gave green light from the ICAD board as well as Niklas Rönnberg
who offered to include the Sonic Tilt competition as a satel-
lite event at ICAD 2023.

Last but not least we celebrate every contribution for the Sonic
Tilt Competition and every app demo and release that is based on
our open source project.

13. REFERENCES

[1] M. Asendorf, M. Kienzle, R. Ringe, F. Ahmadi,
D. Bhowmik, J. Chen, K. Huynh, S. Kleinert, J. Krue-
silp, Y. Lee, X. Wang, W. Luo, N. Jadid, A. Awadin,
V. Raval, E. Schade, H. Jaman, K. Sharma, C. Weber,
H. Winkler, and T. Ziemer, “Tiltification — an accessible
app to popularize sonification,” in Proc. 26th International
Conference on Auditory Display (ICAD2021), Virtual
Conference, Jun. 2021. doi: 10.21785/icad2021.025 pp.
184–191.

[2] T. Ziemer and H. Schultheis, “Psychoacoustical signal pro-
cessing for three-dimensional sonification,” in 25th Interna-
tional Conference on Auditory Displays (ICAD2019), New-
castle, Jun. 2019. doi: 10.21785/icad2019.018 pp. 277–284.

[3] T. Ziemer and N. M. Jadid, “Recommendations to de-
velop, distribute and market sonification apps,” in The
27th International Conference on Auditory Display (ICAD
2022), Virtual Conference, Jun. 2022. [Online]. Avail-
able: https://icad2022.icad.org/wp-content/uploads/2022/
06/ICAD2022 3.pdf

[4] T. Ziemer and H. Schultheis, “The CURAT sonifica-
tion game: Gamification for remote sonification evalua-
tion,” in 26th International Conference on Auditory Display
(ICAD2021), Virtual conference, Jun. 2021. doi: 10.21785/i-
cad2021.026 pp. 233–240.

[5] T. Ziemer and H. Schultheis, “A psychoacoustic auditory dis-
play for navigation,” in 24th International Conference on Au-
ditory Displays (ICAD2018), Houghton, MI, June 2018. doi:
10.21785/icad2018.007 pp. 136–144.

[6] G. Kramer, “Some organizing principles for representing
data with sound,” in Auditory Display: Sonification, Aud-
ification, and Auditory Interfaces, ser. Santa Fe Studies in
the Science of Complexity, Proc. Vol. XVIII, G. Kramer, Ed.
Reading, MA: Addison-Wesley, 1994, pp. 185–221.

[7] D. Verona and S. C. Peres, “A comparison between the
efficacy of task-based vs. data-based semg sonification
designs,” in The 23rd International Conference on Auditory
Display (ICAD 2017), 2017, pp. 49–56. [Online]. Available:
http://hdl.handle.net/1853/58380

[8] M. Asendorf, M. Kienzle, R. Ringe, F. Ahmadi,
D. Bhowmik, J. Chen, K. Hyunh, S. Kleinert, J. Krue-
silp, X. Wang, Y. Y. Lin, W. Luo, N. Mirzayousef Jadid,
A. Awadin, V. Raval, E. E. S. Schade, H. Jaman, K. Sharma,
C. Weber, H. Winkler, and T. Ziemer, “Tiltification/sonic-tilt:
First release of sonic tilt,” in Git Repository, 2021. doi:
10.5281/zenodo.5543983

[9] R. Hernandez, “cheetomoskeeto / puredata,” in https:
//github.com/cheetomoskeeto/PureData, 2016. [Online].

ISon2022-8

https://doi.org/10.21785/icad2021.025
https://doi.org/10.21785/icad2019.018
https://icad2022.icad.org/wp-content/uploads/2022/06/ICAD2022_3.pdf
https://icad2022.icad.org/wp-content/uploads/2022/06/ICAD2022_3.pdf
https://doi.org/10.21785/icad2021.026
https://doi.org/10.21785/icad2021.026
https://doi.org/10.21785/icad2018.007
http://hdl.handle.net/1853/58380
https:/doi.org/10.5281/zenodo.5543983
https://github.com/cheetomoskeeto/PureData
https://github.com/cheetomoskeeto/PureData

Proceedings of ISon 2022, 7th Interactive Sonification Workshop, BSCC, University of Bremen, Germany, September 22–23, 2022

Available: https://github.com/cheetomoskeeto/PureData
(Accessed 2022-06-25).

[10] T. Hillerson, Programmimg Sound With Pure Data. Dal-
las, TX, USA: The Pragmatic Bookshelf, 2014. ISBN 978-1-
93778-566-6

[11] P. Brinkmann, Making Musical Apps. Sebastopol, CA,
USA: O’Reilly, 2012. ISBN 978-1-449-31490-3

ISon2022-9

https://github.com/cheetomoskeeto/PureData

	 Introduction
	 Materials and Equipment
	 Git Installation
	 Project Download
	 Flutter Download
	 Android Studio Installation and Setup
	 First Test Build
	 Pure Data
	 App Build
	 Troubleshooting
	 No Device in Android Studio
	 Device Recognized by Android Studio but not by Flutter
	 Problems with Pure Data
	 Failing to Build
	 Environment Variables
	 Flutter and Dart
	 streamingassets

	 No Audio in App
	 The Mute Button
	 streamingassets.zip
	 Incompatible Device
	 Erroneous shepardGuide.pd

	 Audio Artefacts in the App
	 Clipping
	 Unknown Pure Data Externals
	 Computational Demands
	 Errors in Pure Data Signal Chain

	 Conclusion
	 Further Reading
	 References

